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Abstract: While temperament 
may present some apparent ad-
vantages, it necessarily sacrifices 
the distinct “JI fusion sonority” of 
intervals that are precisely tunea-
ble by ear. These manifest a vast 
gradation of consonance and dis-
sonance, as yet largely unexplored 
and with fascinating potential for 
new compositions. This article pro-
poses a novel approach, based on 
a mathematical structure called the 
Stern-Brocot Tree, allowing a finite 
set of pitches to be generated in 
just intonation within which music 
may modulate freely without relying 
on temperament.
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Introduction
For over 500 years, Western music theory has postulated the necessity of tempera-

ment. This principle accepts some deliberate, irrational mistunings from just intonation 
(JI).1 Music tuned in a tempered system may move freely between different tonal centres, 
each tuned to a consistent, fixed frequency, all the while giving an impression of changing 
harmony. Notes may suggest a multiplicity of relationships without introducing undesirable 
dissonances or an infinite proliferation of pitches.

Though it may present some apparent advantages, temperament sacrifices the distinct 
“JI fusion sonority” characteristic of intervals that are precisely tuneable by ear. This direct, 
psychoacoustic sensation of harmony ranges from the resonant, beatless smoothness of 
the simplest relationships to a distinct “periodic” snarling typical of higher prime-number 
intervals. JI extended in this way manifests a vast gradation of consonance and dissonance, 
as yet largely unexplored and with fascinating potential for new compositions. This article 
proposes a novel approach to generating a finite, evenly distributed set of pitches in just 
intonation within which music may modulate freely without relying on temperament.

Since no ratios other than powers of 2 (unisons, octaves) multiply to produce another 
power of 2, no finite JI pitch set can replicate the same non-power-of-2 interval at every 
note;2 however, acoustic instruments and human hearing do allow a certain tolerance. In 
our experience, acoustic instruments, especially strings, are able to tune notes to within 
a schisma (2c) in critical harmonic contexts meant to be perceived as extended JI. Finer 
resolutions, though clearly possible with computers and electronics, confront human 
limitations of breath and bowing, as well as the nonlinearities of physical materials, all of 
which introduce small, random fluctuations.

Thus, some finite pitch sets may function as tolerably “complete” approximations of 
harmonic auditory cognition.3 In such cases, when combining intervals it is desirable to 
maintain “consistency”: ratios represented by best-case mistunings ought to combine to 
match best-case representations. Also, it is generally desirable to minimise the retuning 
of held notes in common-tone chord changes. These requirements cause adherents of 
adaptive JI4 and quasi-JI equal tempered divisions to investigate extremely fine-grained 
pitch sets in the thousands of pitches.

1  JI or rational intonation is the practice of establishing the tuning of pitches in relation to each other, based 
on rational number ratios of frequencies, primarily using smaller numbers to maximise the sensation of 
“in-tuneness” or psychoacoustic harmonicity.
2  If the same interval taken from each note of a finite pitch set with n elements always produces another note 
in the set, then a finite number of these intervals must eventually produce a cycle of at most n notes returning 
to an exact unison with the starting pitch, transposed by some number of octaves. Mathematically, this is only 
possible if the interval is some power of 2 to begin with.
3  This term, coined by Marcus Pal, refers to the mechanism(s) by which we perceive harmonic relations 
between frequencies.
4  Adaptive JI, first proposed by Nicola Vicentino, is a form of temperament in which chords are tuned in just 
intonation, but melodic intervals are tempered.
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This article proposes a different approach, one that has the potential to be tuneable 
by ear. It opens the door to the viability of enharmonic exchange (i.e. tonality flux 5 at the 
limits of tonal differentiation), allowing continuous traversal of the tonal network without 
requiring one to backtrack. A pitch set generated with this in mind may serve as a relatively 
“complete” depiction of the wide spectrum of harmonic experience as a  fundamentally 
psychoacoustic and physiological experience.

Prioritising JI sonority requires a JI notation readable in real time, which necessarily limits 
the spectrum of available pitches simply due to the constraints of human understanding. 
Experience has shown that combinations of up to three Helmholtz-Ellis JI Pitch Notation 
(HEJI) symbols in an accidental string represent a practical complexity boundary, allowing 
substantial compositional exploration and real-time music making by human performers 
on acoustic instruments. Since its conception in 2000, the HEJI notation has become 
a standard for notating music in just intonation, and in 2020 the notation has been revised, 
extending the defined set of accidentals to the 47-limit (see below).

Some further desirable conditions for an extended but finite JI pitch set may include 
a relative degree of evenness, a multiplicity of possible tonal centres, and excellent rep-
resentations of the aforementioned JI fusion sonority. Formally mapping such harmonic 
relationships begins with extending Leonhard Euler’s “Tonnetz” through James Tenney’s 
“Harmonic Space”. This model integrates “pitch-height distance” with a quantitative 
measure of so-called harmonic distance within a single multidimensional lattice, extensible 
to any prime limit.

The approach we have developed makes use of an algorithm that generates and 
orders fractions in a manner analogous to harmonic distance. A set of lowest-terms 
rational numbers was formed using the Stern-Brocot Tree up to order 9, then these 
ratios were transposed to each of the ratios of the Pythagorean pentatonic, merged, 
and normalised; finally, duplicates were eliminated, obtaining a set of 933 pitches. This 
set, named 933-Tone-Tree Harmonic Space, brings together the various advantages of 
adaptive just intonation, fine-grain equal temperaments, and the unmediated sonic clarity 
and playability of rational intonation.

5  A term adopted by Harry Partch to describe microtonal voice leading between two or more overtonal/
undertonal harmonic structures in the same register. See Partch, Genesis of a Music: An Account of 
a Creative Work, Its Roots, and Its Fulfillments, second edition (Boston: Da Capo Press, 1979), 188–190.
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Part 1: Methods of Managing and Understanding Harmony

The Euler Lattice and the syntonic comma
In 1739, Leonhard Euler conceived a simple lattice diagram to represent the structural 

harmonic space of music as he knew it – an inverted tree of 12 musical notes or pitch 
classes, generated from one fundamental reference, forming a network of interlocking 
major and minor triads.6

Figure 1: Note that the subscript s means “sharp”, H refers to nB, and B refers to eB.

Beginning with F in the first row, each note spawns two children produced from two 
intervals, an ascending 32 perfect fifth7 and an ascending 54 major third; both are written in 
the next row. These pitch-triples, linked by brackets, generate major triads in the frequency 
proportion 4 : 5 : 6. By construction, neighbouring notes in each row are a descending 
minor third apart.

Leftward diagonals indicate successive ascending perfect fifths (32) and rightward 
diagonals indicate successive ascending major thirds (54) . The diagram’s upper half gener-
ates the seven diatonic notes, tuned in a Lydian mode F–G–A–H–C–D–E–F. Major triads 
rooted on F, C, and G, respectively, form similar upward-pointing triangles. Downward-
pointing triangles outline minor triads.

6  Leonhard Euler, Tentamen Novae Theoriae Musicae Ex Certissimis Harmoniae Principiis Dilucide 
Expositae (ex typographia Academiae scientiarum, 1739), 147.
7  As a convention, the authors distinguish ratios used to describe relative intervals, which are written in the 
form ba  or a : b, and those representing absolute pitches, which are written as fractions b/a.
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This subset of diatonic pitches contains two different whole tones, each with its own 
geometric relationship in Euler’s lattice. F–G, A–H, and C–D are each composed of two 
steps downward-left, comprising two ascending fifths to produce the normalised8 ratio 98. 
G–A and D–E are composed of one step upward-right and one step horizontal-right, 
comprising a descending fifth and minor third. These combine to produce the normalised 
ratio 10

9
. The difference between the two whole tones, 98 and 10

9
, is the syntonic comma 

with ratio 81
80

(ca. 21.5 cents).
The intonation of these diatonic notes follows the interval ratios of the Ptolemaic tense 

diatonic (10
9

, 98,
 
16
15 ) in each of the descending tetrachords E–D–C–H and A–G–F–E. When 

taken in the mode C–C ascending this sequence is often referred to as the Ptolemaic or 
5-limit major scale in just intonation.

It is curious to note the unusual position of the note B, representing eB. Chromatically 
raised notes Fs, Cs, Gs, and Ds are each positioned in their logical place as extensions 
from the single generating reference pitch F at the top right. Where B is written, it is clear 
that the note As (i.e. vA) must fall; Euler writes B, while implying that this 12th note might 
need to be intonated as As. In his quantitative discussion of the pitch set, he indeed 
categorises the interval made by Fs and B as 54.

One might surmise that he is simply choosing to respect the historically defined musica 
vera gamut of eight named notes along the series of fifths from B (molle, “soft”) to H 
(durum, “hard”). On the other hand, Euler was a well-known advocate of including septimal 
intervals in harmonic progressions (a position later taken up by Giuseppe Tartini). The 
choice of As written as B implies a tuning that is a near-enharmonic proximity of 74 above 
C, varying from it by the small interval 224 : 225 or ca. 7.7 cents.

There are two other possible locations for B, should this segment of the lattice be 
extended. These options would make it a parent either of F or of D, and each of these 
“enharmonic” variations would necessitate a new intonation, as different possible positions 
in the lattice imply multiple and distinct geneses. The B one row above F would be one 
syntonic comma lower than the B one column to the left of D, which itself is one diesis 
128
125

 above the implied As originally written by Euler as B. Each of these three intonations 
readily occurs in common musical practice, and their coexistence serves as a window into 
the enharmonic microtonality implicit in even the simplest JI rendering of the dodecaphonic 
pitch set.

The potential for infinite extension of the lattice in all directions is one of the characteri
stics of harmonic modulation in extended just intonation. After Euler, subsequent theorists, 
including Arthur von Oettingen and Hugo Riemann, returned to his lattice diagram and 
expanded it, valuing the clarity with which it reveals the multidimensional interconnectivity 

8  A normalised or octave-reduced ratio is transposed by one or more octaves, if need be, such that it lies 
between 1/1 and 2/1; see discussion below.
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of triadic, 5-limit harmony. The “Euler Lattice” eventually became known as the Tonnetz 
(“tone network”).

Moritz Hauptmann and Hermann von Helmholtz advocated for notating the lattice’s 
microtonal “difference[s] of intonation with certainty and without ambiguity”.9 Using the 
Pythagorean framework as a backbone, Helmholtz defined a system of sub- and super-
scripts to indicate lowering and raising tones by the number of syntonic commas needed 
to differentiate tones generated by means of major thirds rather than perfect fifths. Thus, 
he wrote the major third above F as “A1” and the major third above “A1” as “C2v”, whereas 
the “A” and “Cv” in the chain of perfect fifths from F were written without any subscript. 
This system allowed for the precise notation of any pitch in 5-limit harmonic space.

While Helmholtz’s sub- and superscript notation works effectively in the alphanumeric 
context of a book or an article, his system requires adaptation to produce a staff notation 
for music that seeks to make explicit this microtonal difference. Helmholtz argued against 
higher primes, while acknowledging that some such intervals were consonant, making the 
case that because of their inherently lesser consonance, their treatment would go against 
conventional practices of freely inverting and voicing chords in all registers. Nevertheless, 
by radically choosing to include ratios built upon 11° and 13°, early 20th-century composers 
Elsie Hamilton and Harry Partch extended the concept of just intonation beyond the 
5-limit.10 Inevitably, this extended just intonation progressively brings about more small 
adjustments like the syntonic comma; there is at least one distinctive comma associated 
with each new prime factor. Because of this, any staff notation would necessitate a system 
of symbols that is both unambiguous and expandable. One attempt at devising such 
a system is described in the next section.

Notating music in just intonation
The Extended Helmholtz-Ellis JI Pitch Notation (HEJI) was devised by Marc Sabat 

and Wolfgang von Schweinitz in an ongoing collaboration that began in Berlin, Germany, 
in 1999. At the time, both composers were determined to write instrumental music with 
respect to just intonation. They both imagined notating microtonal pitches in a way that 
would bring out unique psychoacoustic experiences of harmonic auditory cognition (how 
our minds perceive and process relations of tones). These include sensations of fusion, 
combination tones, virtual fundamentals, common partials, etc. Sabat and von Schwein-
itz surmised that an awareness of such sensory qualities and their interaction with the 
techniques of orchestration and instrumental realisation (playability), as well as an exact 

9  Hermann von Helmholtz, On the Sensations of Tone as a Physiological Basis for the Theory of Music, 
trans. Alexander J. Ellis, third English edition (New York: Longmans, Green & Co., 1895), 276.
10  Shorthand notations combining a raised o or preceding u, i.e. 13° and u13, are to be read “13th overtone” 
or “over-13” and “13th undertone” or “under-13”, respectively.
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rather than approximate notation, would allow a greatly extended repertoire of tuned 
sounds – pitches, intervals, and aggregates – to emerge, thereby establishing a practice 
based on an empirically sensible continuum of relative consonance and dissonance.

Mindful of approaches taken by previous generations – Harry Partch’s continuation of 
the ratio notation found in theoretical treatises since ancient times after various unsuccess-
ful staff notation experiments; Ben Johnston’s accidental system based on the 5-limit; James 
Tenney’s combination of cents deviations with tempered pitch classes and approximate 
arrows; various tempered divisions of the tone into multiple equal parts used by early 
microtonalists and the spectral movement – Sabat and von Schweinitz chose to base 
their notation on the 19th-century work of Helmholtz and his translator, Alexander J. Ellis, 
who had drawn on contemporary work by Hauptmann and Oettingen (remarked on in the 
previous section). Namely, they sought to reawaken the Pythagorean system implicit in 
the five-line staff notation and to define higher primes as simple epimoric11 alterations of 
nearby Pythagorean intervals by introducing corresponding symbols.

In the first version of their notation, published in 2001, this approach was followed 
strictly up to the 16th partial, since the lower primes require substantial and readily per-
ceptible alterations from the Pythagorean. Above 16°, the alterations are either smaller 
(i.e. 17° and 19°) or the partials themselves gradually exceed the limits of intervallic saliency 
when presented as simultaneous intervals (see discussion below). Therefore, primes from 
17° to 31° were originally notated with respect to nearby 13-limit sounds; 17° and 29° 
altered ratios 16

15  and 95 , respectively, 31° altered 64
33, while 19° and 23° were written with 

respect to the Pythagorean. Beyond 31°, combinations of lower primes could always 
provide near-enharmonic substitutions, which were used to notate higher primes, written 
by enclosing the accidentals in curly brackets. For example, the prime 47° was notated 
as an inversion of the notation for partial 49° (7°×7°) with curly brackets to differentiate it.

As the notation has come into common practice, various musicians working with it 
have expressed a wish that it more strictly respect its Pythagorean underpinning, even 
with respect to the less “tuneable” higher primes, and provide distinctive logos further up 
the series. In our 2020 revision, created in collaboration with von Schweinitz, Catherine 
Lamb, and M.O. Abbott, HEJI was updated and expanded through the 47-limit. Additionally, 
a new principle of extensibility was also introduced, where, on a case-by-case basis, 
symbols outside the defined gamut may be associated with ratios to simplify notation 
of certain accidental combinations. HEJI provides three such symbols to serve as an 
example of how this principle might be implemented. For example, the schisma is notated 
by means of a  raised or lowered tilde, showing the near-enharmonic intersection of 8 
ascending perfect fifths and one descending major third. The other two symbols simplify 
the combinations of 11° and 13°.

11  An epimoric or superparticular ratio is one where the numerator exceeds the denominator by one, 
representing, for example, the interval between two neighbouring harmonic partials.
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In its standard form, HEJI notation has the following basic characteristics:

	— Every note is written with at least one accidental, even if it is simply a natural sign;
	— The alteration for prime 5 (arrow-up, arrow-down, etc.) is the only symbol that forms 

a ligature with the Pythagorean accidentals (… E, e, n, v, V …) and with itself (resulting 
in combinations like m and g, etc.); the only exception is the double alteration for 
prime 7 (i.e. 49°), which forms a  ligature with itself (e.g.  < + < = ,) but not with the 
Pythagorean accidentals;

	— All other prime alterations are notated as an ordered string of symbols in the standard 
position to the left of the notehead such that the symbol of the smallest prime is 
closest to the notehead and that of the largest is farthest;

	— For alterations of a Pythagorean natural by primes beyond 5, the natural symbol may 
be left out;

	— To facilitate reading multiple accidentals, the locally less significant signs (i.e. those 
that indicate the shifted fundamental and are thus replicated on all its partials) may 
be reduced in size if desired;

	— Cent deviations may be indicated in conjunction with the accidentals; positive de-
viations may be placed just above the accidental, and negative deviations may be 
placed below, though this is not always practical nor necessary; cent deviations are 
generally indicated in relation to the nearest tempered pitch class as would be read 
on a tuning meter; unless otherwise indicated, the pitch with 0 deviation is generally 
the Kammerton A440 notated as Pythagorean A; if the nearest pitch class differs 
from the notated one, it may be added to the cents string as text.

A  legend summarising the notation as well as an example comprising the harmonic 
series of A0 (27.5 Hz) and the subharmonic series of E7 (2640 Hz) are included for 
reference below. Portrait and landscape formats of these reference documents, as well 
as fonts and various other resources, are available under an open-source license from 
Plainsound Music Edition (plainsound.org). These may be used freely as reference material 
in scores. For idiosyncratic uses of the notation that go outside these standard parameters, 
it is suggested to include an appropriate explanatory note alongside these documents.
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The Helmholtz-Ellis JI Pitch Notation (HEJI) | 2020 | LEGEND
revised by Marc Sabat and Thomas Nicholson | PLAINSOUND MUSIC EDITION | www.plainsound.org
in collaboration with Wolfgang von Schweinitz, Catherine Lamb, and M.O. Abbott, building upon the original HEJI notation
devised by Marc Sabat and Wolfgang von Schweinitz in the early 2000s

PYTHAGOREAN JUST INTONATION | generated by multiplying / dividing an arbitrary reference frequency by PRIMES 2 and 3 only

. . . E e n v V . . .

notate a series of perfect fifths above / below a reference
3/2 ≈ ±702.0 cents (i.e. 2c wider than tempered)
each new accidental represents 7 fifths, altering by one apotome
2187/2048 ≈ ±113.7 cents

Frequency ratios including higher prime numbers (5–47) may be notated by adding the following distinct accidental symbols.
Custom indications for higher primes or various enharmonic substitutions may be invented as needed by simply defining
further symbols representing the relevant ratio alterations.

PTOLEMAIC JUST INTONATION | PRIMES up to 5 includes the consonant just major third
5/4 ≈ ±386.3 cents (ca. 14c narrower than tempered)

D d m u U F f o w W alteration by one syntonic comma
81/80 ≈ ±21.5 cents

C c l t T G g p x X alteration by two syntonic commas
81/80 · 81/80 ≈ ±43.0 cents

~u = e |f = v alteration by one schisma to notate an exact enharmonic substitution
32805/32768 ≈ ±2.0 cents

SEPTIMAL JI | PRIME 7 includes the consonant natural seventh
7/4 ≈ ±968.8 cents (ca. 31c narrower than tempered)

< > alteration by one septimal comma (Giuseppe Tartini)
64/63 ≈ ±27.3 cents

, . alteration by two septimal commas
64/63 · 64/63 ≈ ±54.5 cents

UNDECIMAL | PRIME 11 includes the undecimal semi-augmented fourth
11/8 ≈ ±551.3 cents (ca. 51c wider than tempered)

5 4 alteration by one undecimal quartertone (Richard H. Stein)
33/32 ≈ ±53.3 cents

TRIDECIMAL | PRIME 13 includes the tridecimal neutral sixth
13/8 ≈ ±840.5 cents (ca. 59c narrower than a tempered major sixth)0 9 alteration by one tridecimal thirdtone (Gérard Grisey)
27/26 ≈ ±65.3 cents

=e = 50 ?v = 49 combination of 11/13 re-notated enharmonically
alteration by the ratio 352/351 ≈ ±4.9 cents

`n = 40 ´n = 59 combination of 11 * 13 re-notated as a single symbol
alteration by the ratio 144/143 ≈ ±12.1 cents

PRIMES 17 THROUGH 47: ; alteration by one 17-limit schisma
2187/2176 ≈ ±8.7 cents

\ / alteration by one 19-limit schisma
513/512 ≈ ±3.4 cents

6 3 alteration by one 23-limit comma (James Tenney / John Cage)
736/729 ≈ ±16.5 cents

7 2 alteration by one 29-limit sixthtone
261/256 ≈ ±33.5 cents

1 8 alteration by one 31-limit quartertone (Alinaghi Vaziri)
32/31 ≈ ±55.0 cents

à á alteration by one 37-limit quartertone (Ivan Wyschnegradsky)
37/36 ≈ ±47.4 cents

- + alteration by one 41-limit comma (Ben Johnston)
82/81 ≈ ±21.2 cents

è é alteration by one 43-limit comma
129/128 ≈ ±13.5 cents

ì í alteration by one 47-limit quartertone
752/729 ≈ ±53.8 cents

CENTS HEJI accidentals may be combined with an indication of their deviation in cents from equal temperament as read on a
tuning meter; An 440 Hz is usually defined to be ±0 cents. If this deviation exceeds ±50 cents, the nearest tempered pitch-class
may be added: e.g. A0 (−65 cents from An) could include the annotation Ae+35 placed above or below its accidental.

TEMPERED NOTES | may be combined with cents deviations to notate free microtonal pitches

. . . A a i j r z Z . . .
indicate the respective equal tempered quartertone;
show which pitch is assigned a deviation of 0c
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-26 A+36

Ü47
A-36

The Helmholtz-Ellis JI Pitch Notation (HEJI) | 2020
Harmonic / Subharmonic series 1–49 notated by modifications of Pythagorean notes

with dedicated microtonal accidental symbols for primes 5 through 47

revised by Marc Sabat & Thomas Nicholson

in collaboration with Wolfgang von Schweinitz, Catherine Lamb and M.O. Abbott

building upon the original HEJI devised by Marc Sabat and Wolfgang von Schweinitz

cc 2020 Plainsound Music Edition
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The “spiral model”

Figure 2: “The Harmonic Series as a Logarithmic Spiral” by Erv Wilson (1965)
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Pitches generated by harmonic and subharmonic series evolve out of the composition 
of numbers as unique products of primes. Each power of 2 is equivalent to transposi-
tion by one octave, which is usually considered an equivalence relation. All octaves of 
a frequency belong to the same pitch class, and all powers of 2 are considered musically 
equivalent in some sense. It is, therefore, common to express a pitch class as a ratio in 
normalised form, by adjusting the power of 2 accordingly to obtain a fraction between 1

1
and 21, a conceptualisation championed by Partch.

As the harmonic series progresses, octave by octave, each of the previously established 
intervals recurs and is divided. The first octave, 1 : 2, is simply the undivided interval 21; the 
second octave, 2 : 4, is a 2

1 divided by 3° into two parts, 2 : 3 : 4, producing the intervals 
3
2 and 43; the third octave, 4 : 6 : 8 is divided by 5° and 7° to produce 4 intervals, etc. This 
method of dividing intervals always generates epimoric steps because they are frequency 
ratios of successive harmonics and thus near-equal, “harmonious” small-number divisions. 
One well-known example occurs in the fourth octave of the series, where the major third 
4 : 5 is divided 8 : 9 : 10 to produce two nearly equal whole tones, as discussed above in 
terms of the Euler Lattice.

Each odd partial introduces a new pitch class, and with it new, specific, and typical 
JI sonorities, while every even number is a repetition of an earlier partial transposed by 
an octave. Since the primes by definition are indivisible, their pitch classes may only be 
reached in a single step from the reference frequency. If the interval subtended cannot be 
tuned, then that note remains, in some sense, harmonically inaccessible; it may only be 
established by measurement or reason, but not directly by perception. This boundary is 
often expressed by imposing a “prime-limit” on the ratios included in an harmonic space.

On the other hand, composite numbers that are odd play a special role: by combin-
ing two or more odd factors, these partials represent bridges between pitch classes. 
Composite numbers may be broken down into smaller factors, and these, when odd, 
produce different pitch classes. As long as the primes involved are all salient, the composite 
interval may be established in multiple ways by a finite sequence of steps. For example 
9° is the 3° of the 3°, or 15° may be taken in two ways, as the 3° of 5° or the 5° of 3°.

In her article “Conceptualising the Spiral: Humans Intersecting with Harmonic Space” 
(p. 250 of this volume), composer Catherine Lamb reflects on her ongoing work with 
a model of the harmonic series as a  logarithmic spiral. She has developed a personal 
version of Erv Wilson’s diagram from 1965,12 visualising the cyclic division of each octave 
by odd partials, as described above. In general, the entire range of frequencies may be 
expressed as ratios from a single reference, e.g. 11 = 440 Hz. The range of these possible 
ratios is the set of all positive real number values r > 0. Since frequency relations are 

12  Erv Wilson, “The Harmonic Series as a Logarithmic Spiral”, 1965, http://www.anaphoria.com/harm-
subharm.pdf.
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multiplicative, the expression log2r allows intervals to be measured additively in terms of 
the base, in this case 2, which simply calculates the number of octaves comprising an 
interval. By linking log2 r with a rotational angle θ such that one complete rotation through 
360° = 2π radians is scaled to represent one octave, Wilson devised a useful visualisation 
of the harmonic series and its cyclic generation of octave-equivalent pitch classes.

The polar equation log2 r = θ
2π generates a spiral upon which every positive real ratio r 

projects onto a specific angle θ along with all of its octave transpositions, which lie on 
a straight line or “spoke” radiating from the origin. Thus, the angle represents a pitch class, 
with a unique value 2π log2 r. Ellis’s well-known measure of interval size using 1

1200’s of an 
octave defines the cents of a ratio r as cents = 1200log2 r, so θ = π

600 cents. The harmonic 
series is a special subset of r, namely, that consisting of all of the natural numbers n. Since 
the spiral is self-similar at all scales, curling inward infinitely towards the origin even beyond 
a radius of 1 (the generator), the subharmonic series is depicted along the same curve 
by all of the reciprocals of natural numbers r = 1n . The portion of the spiral between r = 1 
and r = 2 represents the normalised octave of pitch classes. It is interesting to note how 
Wilson’s spiral curves clockwise, implying the use of only negative angles.13 In examining 
the logarithmic spiral in as simple a form as possible, the remaining spirals in this article 
curve counterclockwise, thereby graphing positive angles.

This visualisation is particularly useful when examining the distribution of various 
pitch-class subsets. Each fraction occurs at some unique point on the spiral curve, and 
by projecting a  line from the origin through this point, there will always be one unique 
point on the normalised segment of the spiral that marks the intersection of the line and 
the spiral. As fractions are added to a pitch set, their normalised form may be visualised 
by projecting “spokes” onto the normalised segment and observing the distribution of 
points (as in an analysis of the 17-limit tuning of the blues scales in Figure 3). Since each 
octave subtends a full rotation around 2π radians, this model allows the symmetries and 
distribution of intervals in various pitch sets to be easily conceptualised and compared. In 
this sense, it offers a window into how one might approach imagining the multidimensional 
character of harmonic space as it is extended beyond the triadic generators 2°, 3°, 5°.

13  In polar coordinates, the angle θ is conventionally measured from the horizontal axis extending rightward 
as 0, thus counterclockwise rotation generates increasing positive values.
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James Tenney’s harmonic space

“It follows naturally that the apprehensions of the senses are determined and bounded by those 
of reason, first submitting to them the distinctions that they have grasped in rough outline – at 
least in the case of the things that can be detected through sensation – and being guided by 
them towards distinctions that are accurate and accepted. This is because it is a  feature of 
reason that it is simple and unmixed, and is therefore autonomous and ordered, and is always 
the same in relation to the same things, while perception is always involved with multifariously 
mixed and changeable matter, so that because of the instability of this matter, neither the 
perception of all people, nor even that of the very same people, remains the same when directed 
repeatedly to objects in the same condition; but it needs, as it were as a crutch, the additional 
teaching of reason.”

— Claudius Ptolemy14

Arguably, one limitation of the spiral is a direct consequence of its 2-dimensionality: it 
only allows for two quantities to be encoded when representing a pitch. In the shift from 
Cartesian to polar coordinates, the information pair (numerator, denominator) is effectively 
transformed into the pair (ratio, pitch-class height), which suggests a clear geometric and 
musical conceptualisation. As notes are added, the circle of pitch classes filling up the 
octave 1 : 2 becomes more densely populated.

To better discern and differentiate harmonic relationships, it is useful to return to 
a lattice model, extending Euler’s 2-dimensional tone network (discussed above). Recall 
that every natural number has a unique prime factorisation, which may be mathematically 
written as a product of primes with positive exponents (primes that are not factors receive 
the exponent 0). Every fraction is simply a division of two such products, which may be 
simplified to a product of primes with integer exponents, some of which may be positive, 
thus corresponding to the factors of the numerator, and some negative, corresponding 
to the factors of the denominator.

In “John Cage and the Theory of Harmony”,15 James Tenney describes what he calls 
“harmonic space”: a  lattice of infinite dimensionality in which every axis corresponds to 
a prime number pi. In each of these prime dimensions, units of length log2pi along the 
axis enumerate the exponent of pi in the prime factorisation of a given rational number. 
Thus, each lattice point represents a unique rational number and each rational number is 
represented by a unique point, corresponding to a frequency ratio measured from some 

14  Andrew Barker, Greek Musical Writings, Volume II: Harmonic and Acoustic Theory (Cambridge: 
Cambridge University Press, 1997), 276–277.
15  James Tenney, From Scratch: Writings in Music Theory, ed. Larry Polansky et al. (Champaign-Urbana: 
University of Illinois Press, 2015), 280–304.
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reference. The ratio itself may be concisely represented as “harmonic space coordinates” 
in the form of a so-called monzo, which is a vector comprised of the exponents of the 
primes involved. For example, the ratio 35

18
 has a prime factorisation of 2–13–25171, so its 

corresponding monzo would be expressed as | –1 –2 1 1 >. Typically, the length of the 
monzo is determined by the prime-limit of the interval it describes.16

Just as was observed in the Euler diagram, moves in this lattice (i.e. vectors) describe 
intervals, and combinations of vectors (paths, shapes) describe chords or aggregates. 
In harmonic space a vector may be describing a movement through several dimensions, 
but it is easily grasped algebraically in terms of the monzos. To calculate an interval 
between two lattice points, their coordinates are simply subtracted term-by-term (i.e. 3 
steps descending in the 2-dimension, 1 step ascending in each of 3- and 5-dimensions, 
would imply the interval 15

 8 , and this is the vector difference between the coordinates of 52 
and 43). Pitch-class equivalency is represented by extending a line through a point, parallel 
to the 2-axis; all lattice points falling on this line would be various octave transpositions. 
Algebraically, this is the same as ignoring the exponent of 2, allowing it to range arbitrarily. 
Pitch height (in the spiral this was the angle to the origin) may also be given a geometrical 
interpretation by constructing a line at 45° = π

4  with respect to all of the prime axes, and 
then projecting orthogonally onto this line. It might be imagined as a vertical line around 
which each of the prime axes are rotated.17 Then the normalised octave would be the 
pitch-height line segment between 0 and 1, and all lattice points project lines onto unique 
points within this bound.

As interlocking harmonic and subharmonic series extend out from a central generator, 
each new note becomes a potential generator of new series or, even more generally, it 
becomes a possible harmonic or subharmonic partial of infinitely many series. This kind 
of endless self-similarity benefits from a geometrical model that is also similarly structured 
at every point while extending infinitely in all directions.

One especially useful consequence of this model is that it becomes possible to readily 
conceptualise subsets of harmonic space spanned by an arbitrary subset of the prime 
axes: for example, the tuning of La Monte Young’s The Well-Tuned Piano may be described 
by reducing to the axes 3 and 7. Since octaves are considered equivalent in his tuning, 
the 2-axis values may be collapsed or projected to an exponent value 0 (i.e. eliminating 
all non-zero powers of 2).

16  Zeros denote intervening primes that are not part of the factorisation (e.g. | –2 0 0 1⟩ for 
7
4 = 2–271). 

Note that the use of ket notation has become standard in recent times, among other reasons to facilitate 
calculations of errors produced in various systems of temperament when approximating just intervals. For 
more information, see https://en.xen.wiki/w/Mike%27s_Lecture_on_Vector_Spaces_and_Dual_Spaces.
17  Note that the pitch-height line passes through the n-dimensional space, it does not add a new dimension. 
In 2 dimensions it would be the line x = y, and in n dimensions it is the line x1 = ... = xn. By the Pythagorean 
theorem, the pi th exponent ai is projected onto the height 1

√2ai log2 pi , thus the lattice point R is projected 
onto h(R) = 1

√2 log2 R  and cents(R) = 1200  h(r)√2 .
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Figure 4: A (3.7)-subgroup lattice depiction of The Well-Tuned Piano tuning.

−10 −8 −6 −4 −2 0

1
2

3
4

1

2

>D

nE

>E

<F

nG

<G

nA

>A

<eB

nC

<C

nD

Powers of 2 (2a)
Powers of 3 (3b)

Po
we

rs
of

7
(7

c
)

Figure 5: A three-dimensional harmonic space subset mapping the ratios of The Well-Tuned Piano tuning.

While mathematically defined harmonic space may extend indefinitely, the capacity to 
traverse it by vectors that represent salient singular harmonic “steps” is, in fact, bounded. 
The geometry of harmonic space is constrained by the mixed and inconsistent nature of 
sensation, as Ptolemy so clearly articulates in the text cited above. But what bounds might 
reasonably reflect perception, and how?
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Harmonic distance and psychoacoustic tuneability
After first devising the HEJI notation, in 2005 Sabat compiled a list of all ratios found 

between pairs of the first 28 partials from an harmonic series, organised by increasing 
pitch height. Each interval was tested in combinations of various acoustic and electronic 
timbres to determine to what degree the intervals might be considered “tuneable” by 
ear.18 As might reasonably be expected, the simpler sounds to distinguish were those 
ratios with smaller numbers.

There is, however, a simple algorithmic method by which progressively more “disso-
nant”, less immediately “salient” ratios may be deduced. This follows a procedure known in 
mathematics as the Farey Sequence, described in an earlier article by the present authors. 
First, a definition: the mediant of two fractions is the sum of both numerators divided by 
the sum of both denominators. It can be shown mathematically that a mediant always lies 
between both parent fractions, and if they are in lowest terms, then their mediant is also. 
Beginning with 0

1 and 1
1

, successively interpolated mediants obtain an ordering of the 
rational numbers between 0 and 1. Each number is produced in lowest terms and occurs 
at a singular point in the process. The mediant of  01 and  1

1
 is 12; the mediant of  01 and  12 

is 1
3

, the mediant of 12 and 1
1

 is 23; and so on. Taking all the mediants whose denominators 
do not exceed a given value n produces the Farey Sequence of order n. Two neighbouring 
fractions in a Farey Sequence are called a Farey pair. For any two musical intervals forming 
a Farey pair, the most consonant ratio lying between them is their mediant. For example, 
5
4 and 4

3 are a Farey pair. The next most consonant interval between the major third and 
the perfect fourth is the very large septimal major third with ratio 97 .

Informal testing suggests that under good circumstances tuneability may be extended 
up to (at least) 23°. The ratio 23

12 , which is somewhat wider than a Pythagorean major 
seventh, demonstrates a small but better-than-chance degree of tuneability. At the same 
time, many other similarly “large” ratios within these numerical bounds, like 17

13 , may not 
so easily be distinguished or accurately tuned. So what are the parameters constraining 
tuneability, other factors (timbre, register, etc.) being equal? What might be a reasonable 
way of drawing on these sounds to construct and bound a set of rational pitch classes, so 
that the resulting harmonic space is readily traversable by intervals that may be perceived, 
without resorting to deliberate mistuning (temperament), while offering a  free and fluid 
experience of musical harmony?

Tenney defined a measure of harmonic space called harmonic distance (HD), which 
is proportional to the product of the numerator and denominator of each ratio. For a ratio 

18  This is a term that is based on a complex, empirically evaluated interaction of multiple factors. These 
include: a similar volume and sufficiently stable sustain; perceiving beating between partials contained 
within the balance of combined timbres; observing the intonation, resonance, and beating of combination 
tones; listening for periodicity manifested in the phase of superposed partials. It is obviously predicated on 
individual experience and the particularities of specific acoustic spaces.
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a
b  in lowest terms, HD = log2(ab). It is interesting to note that ab alone, which calculates 
the lowest common partial shared by the respective harmonic spectra above a and b,19 
was proposed in the 16th century by Benedetti as an effective measure of the relative 
dissonance of a ratio.20 HD of an aggregate a1:…:an would be log2 applied to the least 
common multiple of the ai.

By establishing a frequency ratio, two pitches combine as though they were two partials 
of an unsounded virtual fundamental, their periodicity pitch Fp. The periodicity of the 
combined waveform of a and b is in many circumstances actually perceived. Sometimes it 
sounds like a pitch, and sometimes it is simply a rhythmic pattern of pulsation. Sometimes 
the first-order difference tone |a — b| is the same frequency as Fp; sometimes it is a higher 
partial of Fp, reinforcing it. Each of a and b may produce an harmonic spectrum, and these 
partials are also partials of Fp; ab is their first partial unison.

Observe that HD is by definition a symmetric measure ideally suitable to intervals, 
since these are identical when considered either upward and downward. For aggregates, 
however, reversing the order of successive intervals (i.e. major and minor triad) does have 
a definite effect on perceived harmonicity, because this depends also on the psychoacous-
tic property of overtonal fusion, but the HD does not change. Tenney therefore suggested 
one other quantitative measurement of psychoacoustic harmonicity, called intersection,21 
evaluated by the expression I = a + b – 1

ab . The smaller the pitch distance Fp from to ab and 
the more fully the spectrum of Fp is sounded, the stronger the perceived sensation of 
consonance. Intersection may also be generalised to aggregates by counting the unique 
partials of each component pitch up to their least common multiple.

Since log2(ab) = log2(a) + log2(b), another interpretation of HD is possible. The com-
mon partial of the fraction a

b  is broken down into two “jumps”, from 1 to a (overtonal) 
and from 1 to b (undertonal). The respective absolute-value pitch distances in octaves 
from fundamental to partials a and b, respectively, are simply added, producing the pitch 
distance to ab. Whether the interval in question is itself constructed upward or downward 
from a generating frequency is ignored. By virtue of the unique prime factorisation of 
each number, a and b may be (potentially) further broken down into elementary steps 
1 : pi for each prime factor dividing them. Thus, measuring HD is equivalent to the sum of 
all absolute distances from the fundamental to a  ratio’s constituent primes. It evaluates 
the harmonicity sum of the totality of steps needed to construct an interval, and does not 
care in which order or direction those steps are taken.

Observed as a sum of elementary steps, it becomes clear that HD ignores the real-
world fact that as primes get larger – in particular as they exceed the ratio 91 , namely, for 

19  ab is the bth partial of a and the ath partial of b.
20  Giovanni Battista Benedetti, Diversarum Speculationum Mathematicarum et Physicorum Liber (Turin, 
1585), 277–283.
21  Tenney, From Scratch, 248.
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prime partials beyond 11° – their associated elementary steps become too wide to support 
psychoacoustically salient harmonic relationships or consonances. To tune these higher 
primes, which practice demonstrates to be possible, factors of 2 need to be introduced 
in the denominator to keep the interval within 3 octaves and allow its consonance to be 
directly grasped. For example, 11

 1  is difficult to establish, but 11
 2  is clear and consonant. 

This is similarly true for 13°.
Therefore, we propose a psychoacoustically adjusted form of HD as follows. By Ten-

ney’s definition, for a ratio expressed as
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Here the first 4 primes, 2, 3, 5, 7, which lie within the 9
1  are treated conventionally, 

while primes 11 and higher gradually are scaled so that each additional octave beyond 
the  91  introduces a factor of 2.

When generating sets of pitches, it is often useful to establish the same pitch 
classes in all octaves. Not all such relationships may be tuneable in closed position, 
but there is often some wider voicing of an interval that is, allowing the pitch class 
to be tuned in a different octave and then transposed back into normalised form. For 
example, consider the ratio 16

11 , which is relatively dissonant and difficult to tune in closed 
position. The ratio  2

11
, on the other hand, is much more readily perceived as consonant. 

This procedure suggests how the adjusted HD might be extended to evaluate relative 
tuneability in a set of pitch classes.
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Given a normalised ratio ab :
	— examine all possible octave transpositions of the two notes, which do not exceed 

a total transposition of 8
1  (i.e. adjust the 2-exponent);22

	— find the optimally tuneable ratio with minimum adjusted HD (i.e. minimise 2-exponent 
absolute value);

	— calculate the adjusted HD of this ratio and assign this value to be the optimised 
pitch-class HD. For example, in the example suggested above, the upper note of 16

11  
is transposed down by 3 octaves to produce the ratio 2

11, which is the pitch class 
ratio’s optimal voicing. The 2-exponent is reduced from 4 to 1. Therefore, the adjusted 
pitch-class HD of 16

11
 is measured as 2

11, increasing its evaluated saliency.

Part 2: 933-Tone-Tree Harmonic Space

Conditions for an enharmonically viable subset of harmonic space
Assuming that sounds intended to articulate salient relations in harmonic space should 

remain for the most part true and undistorted (“pure”), what are possible options for defining 
musically flexible subsets of pitches? In particular, how is it possible to do so without 
resorting to deliberate mistuning (temperament)? The perception of simultaneous sounds 
(chords) favours relationships of smaller numbers and intervals outside the critical band (ca. 
7
6 and greater), and small deviations from these ratios are recognised with a high degree of 
sensitivity. Substantial variations in size between combinations of these “pure-tuned” ratios 
produce an infinitude of noticeably microtonal differences, which may easily produce a sense 
of “out-of-tuneness”. On the other hand, perception of successive sounds (melodies) favours 
relationships of larger numbers and intervals within the critical band (ca. 8

7  and smaller), 
preferring evenness and fine variation in interval size to suggest clarity and purity. Each 
paradigm supports a different and potentially opposed continuum of simplicity/complexity.

Harmony in its musical sense, namely, as discernible progressions, sequences, and 
relations of pitched sonorities both simultaneous and successive, is therefore animated 
by a  tension between locally compact23 pitch aggregates in harmonic space, psycho-

22  This is equivalent to assuming that octave transpositions of notes by up to 3 octaves (by 
2
1, 

4
1, or 

8
1 ) do not 

effectively add any HD, because in practice this process is easily accomplished by ear. The mathematical 
process involved reduces the absolute value of the 2-exponent of the ratio by at most 3.
23  Compactness is used in this paper somewhat informally. It refers to the process of minimising harmonic 
distance within a set of pitches. For example, the lattice of tones defining the Ptolemaic major scale consists 
of neighbouring points along the 3- and 5-axes of harmonic space, projected into the same octave by 
transposition along the 2-axis. It is in some sense compact: intervals available from each note to most other 
ones in the scale are relatively consonant because the pitches are nearby. Developing a more rigorous 
discussion of this topic, including comparison of various measures and bounds and considering how these 
affect melody and chord aggregates is an active area of ongoing research.
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acoustically plausible enharmonic transitions (“substitutions”), which momentarily privilege 
pitch-height distance (proximity) over harmonic distances within the lattice, and a practical 
wish to maintain some degree of pitch consistency or “centring”.

Without enharmonic transitions, one would have the kind of traversal that Lou Harrison 
described as “free style”, relating pitches to other pitches locally by salient harmonic 
relations, and allowing the point of reference to drift from moment to moment. Such an 
approach, though common, may very quickly move away from a pragmatic JI notation, 
because there is no fixed backbone of pitches to refer to, only relative intervals. Composers 
like Toby Twining, in his vocal work Chrysalid Requiem, have devised solutions where 
accumulations of accidentals representing multiple septimal intervals, for example, are 
enharmonically renotated simply by temporarily shifting the reference frequency. However, 
this method may be too disorienting when attempting a practical correlation to most 
instruments other than the completely untethered human voice or theremin, etc. It is 
interesting to consider compositional approaches that disguise or delineate awareness 
of drifting pitch and how these may affect formal relationships in a piece.

Alternatively, one might restrict oneself to a kind of “strict style”, an extension of modal 
or sruti-based systems, in which a particular region of harmonic space is strictly mapped 
out by the music exactly as it allows (i.e. La Monte Young’s The Well-Tuned Piano or 
Wolfgang von Schweinitz’s Plainsound Glissando Modulation). Such an approach is 
compatible with JI notation and with a limited sense of tonal “modulation”, while demand-
ing that harmonic steps taken be eventually retraced, perhaps in a different order, but 
nonetheless returning home before proceeding in a new direction.

Recall the three  eB’s in the extension of Euler’s lattice discussed above. In this case, 
each of the three enharmonic differences between them is large enough to change the 
sense in which an interval is interpreted. With certain constellations of notes it might 
suggest a move between two different consonances, but more likely it would simply shift 
a sonority from consonance to dissonance, producing a “wolf” interval. To compose in 
quasi-“free” style, more subtle degrees of substitution would be necessary. For example, 
in al-Farabi’s tuning of the oud, which was a modification and extension of al-Kindi’s, there 
are 5 strings tuned in Pythagorean perfect fourths (ascending 43 ratios) with frets at 89ths 
and 27

32nds of the string length (see Figure 6). On the same string, the difference between 
these two frets is a limma 243 : 256. Two strings over, the difference is an octave less an 
apotome, and three strings over, the interval produced is 6561 : 16384, which differs from 
the simple ratio 2 : 5 by only 32768 : 32805 (less than 2 cents). This well-known “schisma” 
is perhaps the first of several “near-enharmonic” proximities to come into common use 
and is the difference between 8 descending Pythagorean perfect fifths (normalised to 
a diminished fourth) and one ascending 5

4
.
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Figure 6: Al-Farabi’s divisions of the strings of the oud.

       

                   
n e ;e 5 n e 5 e n n n e ;e 5 n e 5 e n n
String I (lowest) String II

       


          

        
 n e ;e 5 n e ;e 5 n e e

5 e n n e ;e 5 n e

String III String IV

   

           e 5 e n n e ;e 5 n e

String V

Figure 7: Al-Farabi’s divisions transcribed as rising tones in HEJI notation with string I tuned to G.

The probabilistic evaluation of “harmonic entropy” proposed by Paul Erlich quantifies 
the question, in his own words, “how confused is my brain when it hears an interval” as 
it “attempts to fit the stimulus to an harmonic series”.24 Certain large-number ratios in the 
near vicinity of better-known simple ratios have a higher probability of being perceived as 
mistunings of the simpler ratios rather than eliciting distinct “sonic fingerprints” in their 
own right. This characteristic of harmonic auditory cognition allows for a greater harmonic 

24  Paul Erlich, “Harmonic Entropy”, 2004, http://www.soundofindia.com/showarticle.
asp?in_article_id=1905806937.
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variety to be inferred from a reduced set of pitches (in this case, as defined by the positions 
of the frets described by al-Kindi), namely, Ptolemaic ratios combining primes 2, 3, and 
5 may be represented by means of the extended series of 32 perfect fifths. Note that the 
natural tolerances of an acoustic instrument (bow, breath, finger pressure, etc.), even in 
a highly controlled context, vary within a comparable range of ca. 2 cents.

In 12-tone Pythagorean tuning, which was used as one of the first systems applied to 
organs, the sequence of 12 perfect fifths obtains four diminished fourths that are each one 
schisma smaller than 54’s. The observation of this near-enharmonic proximity led to various 
transitional just tunings25 before meantone temperaments became common practice. In 
several historical tunings, these diminished fourths were “corrected” and tuned as pure 54’s, 
producing a perfect fifth narrowed by a schisma, ca. 700 cents, at the point of transition. 
Note that the perfect fifth on a modern equal-tempered piano also differs from a pure 32 
by approximately one schisma; arguably, the perceived “in-tuneness” of 12-EDO lies in 
its close proximity to Pythagorean tuning, rather than in its ability to (poorly) represent 
Ptolemaic ratios or any of the higher primes.

Helmholtz cites Arabic and ancient Persian sources for their remarkable implementation 
of the schisma, and describes a “schismatic” organ tuning he put into practice that unites 
the Pythagorean and Ptolemaic systems in a single, enharmonic framework of 24 pitches. 
Observe, however, that 53 tones are actually necessary to produce an enharmonically 
viable simulation of freestyle in the 5-limit, enabling undistorted representation of its 
characteristic intervals, such as 32, 54, and 81

80. 1
53 of an octave closely represents both the 

syntonic and the Pythagorean commas, which differ by a schisma; after 53 untempered 
3
2

’s the deviation from the starting pitch is only 3.6c. By the 1870s, von Oettingen had 
conceived of a 53-tone justly tuned keyboard instrument called the “orthotonophonium”, 
with a 53-tone JI tuning centred around D, taking advantage of schisma-altered “near-fifths” 
to emulate a continuous Tonnetz. Oettingen begins by adding 4 ascending and descending 
3
2’s on either side of D to produce a chain of nine perfect fifths. Taking 54’s above and below 
eight of these fifths accordingly, he extends the chain of fifths with an enharmonic schisma 
alteration, and continues similarly until the system generates 26 “fifths” on either side of D.

25  Klaus Lang, Auf Wohlklangswellen durch der Töne Meer: Temperaturen und Stimmungen Zwischen 
dem 11. und 19. Jahrhundert (Graz: Institut für Elektronische Musik (IEM) an der Universität für Musik und 
darstellende Kunst in Graz, 1999).
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Wolfgang von Schweinitz 

Feb. 18, 2007   

The Classical Indian Just Intonation Tuning System
Transcription of Table 4, 5, and 6 in chapter II ('Early Experiments in Music')

of Book V of the anthology 'South Indian Music' by Prof. P. Sambamurthy

notated in the 'Extended Helmholtz-Ellis JI Pitch Notation'
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Figure 8: The Indian sruti system according to Sambamurthy, transcribed by Wolfgang von Schweinitz.26

In his speculative reconstruction (see Figure 8) of the Indian sruti system based on 
rational intervals, which were apparently not used in early Indian music theory, Pichu 
Sambamurthy introduces a substitution by one schisma after six ascending and descending 
3
2 ’s  from “sa”, in a manner conceptually akin to the tuning implemented by Oettingen. 
He then continues the respective Pythagorean chains from these new notes, stopping 
before reaching syntonic-comma-altered enharmonics of the initial sa or pa. This produces 
a total of 24 notes, 12 pairs of nearby tones, two pairs of which deviate by one schisma, 
resulting in an effective pitch set of 22 srutis. This example shows how a limited “strict 
style”, continued far enough, might approach a perceptually near-perfect “free style” in 
a higher limit. Musicians practising Indian traditions like Dhrupad, in which very precise 

26  Wolfgang von Schweinitz, “The Classical Indian Just Intonation System”, 2007, https://www.plainsound.
org/pdfs/srutis.pdf.
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differences of tuning are recognised, often resist attempts to quantify exact tuning of the 
srutis. In addition to well-known 5-limit intervals, there are many other subtle enharmonic 
variations, which come into play in actual music-making when following the melodic logic 
of specific ragas against the drone. An actual enumeration of commonly played srutis 
might more realistically number in the hundreds and likely would involve primes beyond 5.

It is interesting to note Oettingen’s advocacy of a just tuning rather than an arguably 
even more “perfect” sounding micro-temperament, in which the schisma is “imperceptibly” 
distributed across 8 slightly-tempered fifths. Since such a subtle mistuning falls below 
the threshold of stability for most acoustically generated tones, it might be considered by 
some a more “ideal” compromise solution for musical practice, compatible with adaptive 
just intonation. An argument against such an approach is the fact that, unlike extensions 
of the JI pitch space, micro-temperaments require frequencies of JI ratios to be subtly 
adjusted with each new vertical structure. However, these intentional mistunings can only 
be realised accurately with fixed-pitch instruments or by relying on digital tuners.27 On the 
other hand, in JI, even with many notes, there is always a possibility that pitches may be 
exactly tuneable on acoustic instruments by ear alone. This perhaps utopian yet imaginable 
distinction – of composing harmonic space in accordance with perception – compels us to 
favour experimental explorations of this tension between the measurable and the sensible.

At this point, it is possible to list, in a loosely prioritised order, some desirable conditions 
for enharmonically viable subsets of harmonic space. These might serve as suitable sets 
of pitches used by a computer-controlled fixed-pitch instrument or as relatively “complete” 
depictions of the extent of harmonic auditory cognition.

	— A 47-limit HEJI notation that does not exceed 3 accidentals to facilitate real-time 
music-making.

	— Allowing enharmonic substitutions within approximately one schisma at each point 
of the pitch set so that salient ratios at harmonic boundaries of the system may 
effectively be emulated.

	— A relatively even distribution of pitch classes within the octave and of melodic steps 
within individual harmonic and subharmonic series.

	— An excellent representation of the extended Pythagorean and 5-limit without wolf 
intervals (false fifths or false thirds) unless desired compositionally.

	— Tuneable intervals through the 23-limit from multiple points of reference.
	— A set of tonalities: otonalities and utonalities on all of the chromatic notes.
	— A systematic search ordering, allowing any arbitrary frequency to be mapped to the 

harmonically simplest pitch class available within a desired tolerance. This would 
enable a computer instrument to interpret frequencies as ratios in a manner similar 
to a human listener.

27  Note the prevalence of pitch correction software in music production today, so that musicians may actually 
“play” or “sing” in 12-tone equal temperament.



{ 90

#11 2020 Živá hudba

The Stern-Brocot Tree: Generating a compact harmonic space
In January 2020, we published a paper investigating properties of Farey sequences 

applied to the distribution of harmonic nodes on stringed instruments, as well as the 
ordering of fractions, representing pitches or intervals, that may define an harmonic space 
(briefly discussed above in relation to harmonic distance and tuneability). Note that the 
Farey sequence order n + 1 does not contain all of the possible mediants in the Farey 
sequence order n; only those mediants with denominators ≤ n + 1 are included, and the 
fractions are always limited to the range between 0 and 1.

A  related algorithm – the Stern-Brocot Tree – is an infinite binary search tree that 
eventually lists every positive rational number exactly once and always in lowest terms. Each 
new row of the tree is populated by all the mediants of neighbouring fractions from the 
union of all previous levels of the tree. Beginning, conceptually, with the pseudo-fractions 
0
1 and 

1
0, which are always excluded from the tree itself, the Stern-Brocot Tree order 1 is 

defined as their mediant: 11. This becomes the parent of two children, the mediants of 11 
with 0

1 (i.e. 1
2) and with 

1
0 (i.e. 2

1). All three fractions (12, 1
1, 2

1) form the Stern-Brocot Tree 
order 2. The next iteration of this procedure is shown in Figure 9.

1
1

1
2

1
3

2
3

2
1

3
2

3
1

Figure 9: The Stern-Brocot Tree order 3.

The number of fractions in a given row n is always 2n–1. By collapsing the tree, one 
generates a sequence of 2n–1 ordered fractions in lowest terms, bounded by the fractions 
1
n  and n1. This sequence is symmetric around 11, containing pairs of reciprocals, suggestive 
of the way harmonic and subharmonic series emerge around a given reference, or, more 
simply, how any interval may be generated equally feasibly above or below any given 
pitch (11). It is exactly this symmetry that makes the Stern-Brocot Tree an ideal generator 
for notes comprising a pitch space.

The Stern-Brocot sequence order 9 (SB-9) with 511 fractions – plotted on a logarithmic 
spiral in Figure 10 – is the largest order sequence within the 47-limit, i.e. producing ratios 
that are all notatable in HEJI. A translation into notation with nD as 11 verifies that no more 
than 3 accidentals are needed to notate these pitches. Additionally, as the Stern-Brocot 
Tree grows, ratios between neighbouring fractions in the sequence approach 11. Musically, 
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this manifests as a melodic step between neighbouring notes approaching unison. SB-9 
is the first sequence in which steps smaller than the schisma appear, allowing for almost 
imperceptible enharmonic substitutions. These properties satisfy the first two conditions 
established in the preceding section for an enharmonically viable extended JI pitch space.

Regarding the question of evenness, one faces a similar dilemma to that encountered 
by Partch when he collated the pitch set produced by his 11-limit tonality diamond. In 
the case of SB-9, gaps between fractions range from as large as a whole tone (8:9 ≈ 
204c, found between 8

1 
 and 91  and their reciprocals) to somewhat smaller than a schisma 

(1155 : 1156 ≈ 1.5c, found between 34
21  and 55

34
 and their reciprocals). A simple procedure 

to begin filling in these gaps is to normalise the sequence. 129 of the fractions in SB-9 
already lie in the range between 1

1 and 2
1. After normalising the remaining fractions and 

eliminating duplicates, a total of 269 pitch classes are derived. The “issue” of unevenness, 
however, remains. The largest gap is now reduced to 23 : 24 ≈ 73.7c, found between 11 and 
24
23  and their complements within the octave, and the smallest is 1681 : 1682 ≈ 1c, found 
between 41

29  and 58
41

. Rather than arbitrarily filling in the larger gaps, as Partch decided to 
do, we proceeded by plotting the normalised SB-9 set (SB-9N) on the logarithmic spiral 
(Figure 11) to shed light on the problematic regions.
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Figure 10: 511 fractions comprising the Stern-Brocot Tree through order 9, indicated as dots. Spokes 
are produced to the normalised forms, lying in the octave between 11 and 21, bounded by two larger dots 
indicated along the horizontal axis (= 0 radians).
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Figure 11: The 511 fractions of the Stern-Brocot Tree through order 9 render 269 pitch classes when 
normalised to the octave between 11 and 21 (abbreviated as SB-9N).

The largest gaps (in descending order) are found around the pitch classes 11 (23 : 24 
on either side), 3

2
 (104 : 105 ≈ 16.6c on either side), and 4

3  (111 : 112 ≈ 15.5c on either 
side). Recall that among the conditions proposed for an enharmonically viable pitch set 
is an excellent representation of the extended Pythagorean and 5-limit, i.e. a chain of 53 
perfect fifths with occasional “near-fifths” or “near-thirds”.28 To achieve this, a pitch set 
needs to span several chains of 8 fifths, reaching schisma-altered thirds. In SB-9N the 
3-exponents range between –3 and +3, spanning at most 7 perfect fifths. This suggests 

28  To keep the definition of tolerance in line with the previous discussion, in this case “near” refers to an 
alteration by about 2c or approximately one schisma. Note that the extended Pythagorean chain of 53 32’s 
produces the interval 284:353=19342813113834066795298816:19383245667680019896796723≈ 3.6c.
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transposing the pitch set by additional perfect fifths, i.e. powers of 3, thereby extending 
the Pythagorean chain and reducing the larger gaps.

For other nearby Pythagorean pitches from the series of 3
2’s, the gaps in SB-9N are 

as follows.

	— 	98  (368 : 369 ≈ 4.7c)

	— 	16
9

 (351 : 352 ≈ 4.9c)

	— 	27
16

 (512 : 513 ≈ 3.4c)

	— 32
27

 (1215 : 1216 ≈ 1.4c)

This final gap is once again smaller than one schisma.
To transpose the original normalised set of 269 pitches, the intervals 

3
1 , 

1
3 , 

9
1 , and 

1
9  

were chosen. These pitches, together with 1
1

, correspond to the notes of the Pythagorean 
pentatonic nC, nG, nD, nA, nE, which divide the octave into five parts relatively evenly29 while 
at the same time corresponding to the five familiar open strings of the orchestral string 
instruments. The entire set of resulting fractions was normalised and duplicates were 
removed, resulting in what we call the “933-Tone-Tree Harmonic Space”. By combining 
these pitches the gaps are evened out so the average step size is less than a schisma 
(i.e. ca. 1.3c). The complete, normalised pitch set typeset in HEJI notation is presented at 
the end of this article, and is available as a PDF for free download from plainsound.org.

This 933-Tone-Tree Harmonic Space, based on permutations of SB-9N, satisfies the 
remaining conditions for an enharmonic set of pitches (outlined above) in the following 
ways.

29  Building powers of 3 symmetrically around 11, the first set of pitches, normalised, is 
4
3, 11, 

3
2, dividing the 

octave into 2 perfect fourths (498c) and a tone (204c). The next set of ratios (pentatonic) divides the octave 
into 3 tones (204c) and 2 Pythagorean minor thirds (294c); these two intervals are relatively close in size. 
The next division (heptatonic) divides the octave into five tones (204c) and two limmas (90c), which are 
(once again) further apart. Further divisions introduce more intervallic variety (first the apotome, then the 
Pythagorean comma). Thus, the most “even” division among these options is the pentatonic.
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Figure 12: The 933-Tone-Tree Harmonic Space as a spiral, indicating the genesis of every pitch class. 
Each transposition of SB-9N is graphed as a set of points, forming one of five spiral segments, each 
delineating its own normalised octave. All of the pitches generated are produced as spokes leading to 
normalised pitches in the main octave  11 to 21. Comparing spokes and dotted points along the original, 
untransposed SB-9N segment between  1

1
 and 2

1
 demonstrates how the various transpositions combine to fill 

the “gaps” in the original set.
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Pythagorean and 5-limit representation
The 43 pitches comprising the (3.5)-subgroup  of SB-9N form a 41-tone Euler Lattice 

around nD with two schisma-differing pairs (eE:uD and fD:vC). This set alone does not suffice 
as a “cycle” of fifths without a “wolf”: the interval at the extremes is gB:tF = 6561 : 10000 ≈ 
729.6c, about a septimal comma larger than 2 : 3. To enharmonically extend the lattice, 
observe that the difference between the syntonic comma 80 : 81 (connecting 3 and 5) 
and the 41-comma 81 : 82 (connecting 3 and 41) is only 6561 : 6560 ≈ –0.3c.

By including the 24 additional notes completing the (3.5.41)-subgroup of SB-9N, 
the lattice may be extended to 51 notes, since 14 of the 24 are in fact enharmonically 
proximal to the 5-limit lattice already established. The enharmonic proximities include 
6560 : 6561 ≈ 0.3c (e.g. mD:-D) or 1024 : 1025 ≈ 1.7c (e.g. -C:tB). The 41-limit pitches form 
two 5-limit sublattices amongst themselves, retaining the structure of interlocking just 
major/minor triads that characterise the Euler Lattice.

Since the (3.5.41)-subgroup does not yet complete a cycle of 53 near-32’s, one more 
enharmonic proximity is needed. The best option involves including 10 notes of the 40-note 
(3.5.13)-subgroup of SB-9N. 13° differs from the Pythagorean by 26 : 27, which, divided 
harmonically in three, produces the harmonic series segment 78 : 79 : 80 : 81. Thus, three 
syntonic commas and the tridecimal thirdtone are close enharmonic proximities. The 
relevant enharmonic steps are either 1600 : 1599 ≈ –1.1c (e.g. -mA:0oA) or at the “seam” 
connecting the extremes, 625 : 624 ≈ –2.6c (e.g. 0oC:9mB). In this case, the enharmonic 
“near-fifth” closing the circle is only very slightly narrower than the fifth in 12-EDO, resulting 
in a chain of fifths with no discernable “wolf”. Since the full (3.5.13)-subgroup extends 
around this “seam”, it is conceivable that an actual “mistuning” of the fifth may be un-
necessary or avoidable in musical practice.

This builds a kind of adaptive just intonation framework similar to Oettingen’s instrument 
mentioned above, and at the same time links to higher prime partials compactly related to 
the central reference note nD. Note that the “seam fifth” is actually closer to a 2 : 3 ratio 
than the “near fifth” produced when generating a chain of 53 pure fifths, and significantly 
better than the “near fifth” connecting the extremities of Oettingen’s tuning. For a lattice 
diagram depicting this extension of the Euler Lattice, see Figure 13..

The Euler Lattice is based on an interlocking of notes in the relationship 4:5:6 (major 
triad) and its inversion 10 : 12 : 15 (minor triad). Extending this to include the most salient 
tuneable relationships (odd partials up to 19° and down to u19) produces the tonal map 
of enharmonic proximities to the extended Pythagorean shown in Figure 14 and Figure 15. 
The central axis here indicates pitches along the Pythagorean series, and the numbers 
along the left column indicate how many fifths away from 1

1
 these respectively lie, ranging 

from –28 to +28 fifths. Grey notes in square brackets fall outside the pitch set. Larger 
boxed regions indicate how the series of fifths nearly “folds” upon itself.



97 } A Compact Enharmonically Viable Subset of Harmonic Space, Thomas Nicholson and Marc Sabat

STATI & STUDIE

Tonalities
The various columns indicate deviations, in cents, from the extended Pythagorean, 

ranging from –4.2c to +4.2c. Notes above each other are in exact 2:3 ratio. If there is 
a dashed line above a note, its odd harmonic partials 3° and 5° are exactly represented 
within the 933-Tone-Tree Harmonic Space. If the line is solid, then additional odd partials 
up to 19°, but not all, are also exactly represented. If the letter “o” is indicated on the 
upper right side of the note, then the entire set of odd harmonics is present, and that note 
is an otonality. A similar principle holds with a dashed or solid line below a note, but in 
this case it refers to odd subharmonic partials down to u19. The letter “u” on the lower 
left side of the note indicates a utonality. An exclamation point beside a note indicates 
that a nearly exact enharmonic substitution must be made for partials 3 or 5 (when line 
is dashed) or for higher partials (when line is solid). In particular, this tonal map allows 
different substitutions to be considered based on the desired context and progression 
of pitches when remaining within the extended Pythagorean framework and optimises 
common-tone stability across enharmonic modulations: this is a  feature unique to this 
pitch set, not found in adaptive JI.

In the complete table of 933 pitches, additional “tonalities”, which are not in direct 
proximity to the 57 Pythagorean fifths mapped, are also included to complete a total of 
98 possible overtonal/undertonal generators. Five of these, namely those based on the 
Pythagorean pentatonic, produce both “o-” and “u-” tonalities. Note the diagram on the 
second page (from 0 to +28 fifths) is a symmetric inversion of the previous page (from 
–28 to 0 fifths). Otonal structures are mirrored as utonal structures and vice versa.
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Figure 13: The enharmonically extended Euler Lattice in SB-9N.
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Figure 15: Enharmonic proximities to the extended Pythagorean (from 0 fifths to +28 fifths).
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23-limit tuneable intervals 
When the measure of adjusted pitch-class harmonic distance is applied on the pitch 

set (ignoring any differences caused by the reference pitch being nC, nG, nD, nA, or nE), 
the 226 pitch classes with least HD (those below a cut-off at 7.9) reproduce all of Sabat’s 
23-limit tuneable intervals except 23

 5 , which is arguably the most difficult to perceive. These 
tuneable notes from the open strings of orchestral string instruments are indicated in the 
following chart of pitches as boxed ratios.

Systematic mapping of arbitrary input frequencies
Since the Stern-Brocot Tree is by construction a binary search tree, it is straightforward 

to use it to construct a search algorithm to find the “simplest” ratio arbitrarily close to any 
input frequency. This method may be adapted to the transposed, normalised pitch set 
derived in this paper. The frequency must simply be considered at each of the possible 
octave transpositions for which normalisation would provide a ratio (between 1

9  and 9
1 ), 

and with respect to each of the five Pythagorean transpositions of SB-9N. The ratio with 
the least harmonic distance within the desired search radius provides the result. Further 
analysis of the pitch set will require a comparative study of its “compactness” with respect 
to various measures, bounds, tolerances, and limits upon harmonic space. One of the 
significant areas of ongoing research is to explore how these properties might apply to 
the practice of composition with respect to microtonal just intonation.

Postlude: Some reflections on enharmonic relationships
In terms of progression and modulation within harmonic space – particularly within 

a complex microtonal framework – the importance of common tones as a practical aid 
for both performer and listener can hardly be overstated. Such tones serve as reliable 
points of reference between musicians tuning in real time. Furthermore, common tones 
help to guide a listener’s ear through potentially unfamiliar webs of tonal relations, offering 
momentary flashes of familiarity. This interplay between the known and unknown may 
produce a surprising, even magical effect. As Jean-Philippe Rameau writes, the “moment 
of surprise passes like a flash, and soon this surprise turns into admiration, at seeing 
yourself thus transported, from one hemisphere to another, so to speak, without having 
had the time to think about it.”30

To perfectly maintain common tones throughout an entire piece of music, however, has 
the potential to be problematic, as the number of distinct pitches can quickly compound 
beyond the abilities of conception and/or notation (i.e. so-called comma “pumps”, which 

30  Deborah Hayes, “Rameau’s Theory of Harmonic Generation: An Annotated Translation and Commentary of 
Génération Harmonique by Jean-Philippe Rameau” (PhD thesis, Stanford University, 1968), 179.
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modulate a  repeating passage upward or downward by a microtonal interval at each 
recurrence; see also the discussion of “free style” and “strict style” above). Even a simple 
four-chord progression might require an infinitude of distinct tones and signs if all common 
tones are perfectly maintained and the progression repeats endlessly, as Giambattista 
Benedetti famously brought to Cipriano de Rore’s attention in a 17th-century letter (see 
Figure 16).
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Figure 16: Two cyclic comma modulations transcribed in HEJI notation.
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To manage this situation in such a way as to alleviate the need for what may seem 
to be infinite pitches while nevertheless maintaining justness of intonation, that is, by 
not introducing irrational temperament into the harmonic space, one might look toward 
enharmonic solutions. These are multiple harmonic branches or streams that very nearly 
coincide in absolute pitch height. The aforementioned schisma is just one clear historical 
example. Given a reference of nA (440 Hz), the notes uC (550 Hz) and eD (549.4 Hz) are 
nearly indistinguishable with acoustic instruments and in the majority of contexts, despite 
having completely different harmonic geneses: uC results from a single otonal step in the 
5-dimension (with a  ratio of 5

4) while eD results from 8 utonal steps in the 3-dimension 
(with a ratio of 8192

6561). This enharmonic proximity suggests a potential interchangeability 
in composition, where what seems perceptually to be a common tone may facilitate 
a progression or modulation along a new branch in harmonic space.

The 933-Tone-Tree Harmonic Space offers an ideal framework for taking advantage 
of enharmonic proximities in this manner, particularly as a basis for e.g. a computer-
controlled keyboard instrument. This space presents a variety of rather novel enharmonic 
steps, most of which are smaller than the schisma. The distribution and occurrence of 
the most fundamental enharmonic connections in the pitch set are shown in Figure 17. 
The enharmonic connection 1215 : 1216 is by far the most prevalent, occurring 36 times 
between adjacent pitches. This suggests a deep, underlying connection between the 
5- and 19-limits, respectively, at the heart of the pitch space (e.g. between *uA and eB). 
The next most prevalent enharmonic is 1664 : 1665 (22 times) – a connection involving 
5, 13, and 37 (e.g. between 0oC and áB).

In particular, such enharmonic proximities link many of the richest full and partial 
tonalities available in the set (as discussed above), and thus serve as an essential gateway 
to the extensive variety and tonal flexibility underlying the 933-Tone-Tree Harmonic Space. 
At this point, an obvious question is whether and exactly how this particular feature might 
be implemented in a systematic and contextually aware way. This would be the first step 
towards developing a kind of computer-controlled continuo instrument for real-time music 
making in just intonation, potentially for performing music in ensembles with traditional 
acoustic instruments: a new instrument that strikes a balance between flexibility, variety, 
manageability, and justness, a machine capable of learning how musicians choose to make 
logical enharmonic adjustments and choices at a very fine harmonic level.
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Figure 17: Enharmonic proximities in the 933-Tone-Tree Harmonic Space.
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933-Tone-Tree Harmonic Space for James Tenney
a compact and evenly distributed 47-limit JI pitch-set generated from a complete 9th order Stern-Brocot Tree

by combining and normalising the 511 ratios taken as intervals from each of the Pythagorean notes C-G-D-A-E

Thomas Nicholson / Marc Sabat 2020
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933-Tone-Tree Harmonic Space for James Tenney (Nicholson / Sabat 2020)
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